Events Add an event Speakers Talks Collections
 

Speakers

Sort by
Newest
Trending
1-24 of 24
1-24 of 24
Filter
Dankrad Feist
Researcher at Ethereum Foundation
algebra, cryptography , equation, exponentiation, factor theorem, field (mathematics), finite field, fraction, if and only if, imovie, international system of units, linearity, money, multiplication, node (networking), outline (list), peer-to-peer, sampling (statistics), scalar (mathematics), secure multi-party computation, siri, software , theorem, truth, umbrella, vacuum
Aditya Modi
PhD Candidate at University of Michigan, Ann Arbor
algorithm, categorical distribution, confidence interval, covariance matrix, dimension, estimation theory, function (mathematics), generalized linear model, goal, gradient, learning, linearity, logarithm, machine learning, matrix (mathematics), optimism, parameter, polynomial, probability, probability distribution, random variable, reinforcement learning, sequence, smoothness, variable (mathematics)
Martin Pawelczyk
ML PhD Student at University of Tuebingen
architecture, bard, barranca province, cartesian coordinate system, categorization, confectionery, cost, counterfactual conditional, definition, dentist, explanation, facial expression, horse, information, linear model, linearity, orange county, california, question, reason, solution
Jan-Christian Huetter
Postdoctoral researcher at Broad Institute of MIT and Harvard
causal model, causality, equation, estimator, experiment, infidelity, lasso (statistics), likelihood function, linearity, logarithm, mathematical optimization, matrix (mathematics), maximum likelihood estimation, mean, minimax, minimax estimator, normal distribution, observation, random variable, sample size determination, sparse matrix, structural equation modeling, the matrix, universe, variable (mathematics)
Gabriel Moreira
PhD Student at Instituto Superior Técnico
algorithm, diffusion, eigenvalues and eigenvectors, factorization, fast pose graph optimization, fraction, frame of reference, function (mathematics), goal, information, laplacian matrix, least squares, linear programming, linearity, mathematical optimization, matrix (mathematics), narrative, orthogonal group, orthogonal matrix, robotics, rotation, signal-to-noise ratio, sparse matrix, symmetric matrix, video
Liang Zhang
Global Sales Strategy & Operations at LinkedIn
before deep learning , artificial intelligence , artificial intelligence tutorial, computer science conference , feed and ads modeling, introduction to multimedia, visio-lingual representations, 3d cnns, accent (sociolinguistics), accuracy and precision, acm 2020 tutorial, acoustic model, action recognition, ads recommendation, advertising, algorithm, angle, apache hadoop, apache spark, api, application software, applications at linkedin, array data structure, array data type, art, artificial intelligence tutorial, artificial neural network, assembly language, association for computing machinery, attention, attention (machine learning), average, baby talk, bag-of-words model, bangalore, beef, before deep learning , bible, bichon frise, cartesian coordinate system, castle, central processing unit, click-through rate, closed captioning, code-division multiple access, codec, coherence (physics), color, common technologies for feed and ads recommendation, compass, computer, computer graphics, computer performance, computer science tutorial, computer science tutorials, computer vision, computer vision 2020, computing, concept, convolution, convolutional neural network, cosine similarity, data, data compression, data conversion, data science tutorial, data type, debugging, deconvolution, deep learning, deep learning and cnns, deep learnning, deep learnning tutorial, definition, depiction, design, desk, diagram, diamond, digital image processing, dimension, dsgmm and deep cluster-and-aggregate method, dynamic programming, education, email spam, energy, engine, enzyme kinetics, equation, essay, euclidean vector, experiment, extract, transform, load, feature (machine learning), feature extraction, feature learning, feed recommendation , file system, film frame, finite set, function (mathematics), gas, gender, gradient, grayscale, hidden markov model, histogram, history, hyperparameter optimization, image embeddings, image representations , image segmentation, image understanding, imagenet, improvements on 3d cnn, improvements on 3d cnns and two-stream, infection, information, information retrieval, input/output, inspection, instagram, intelligence, interface (computing), internet, introduction - feed, ads, search and spam, inverted index, k-means clustering, kdd2020 tutorials, language, language model, learning, lecture-style tutorials, letter case, library (computing), likelihood function, linear combination, linearity, linkedin, literature, loader (computing), logic, long short-term memory, machine, machine learning, map, markov chain, markov model, mathematical optimization, matrix (mathematics), mean, meme, memory, metric learning for images, metric space, microsoft, mixture model, mobile app, monotonic function, motivation, moving average, mp3, multimedia, multimedia infrastructure, multimedia search, multimodality, multivariate random variable, music, nature, navigation, neural network, news, non-local networks and slowfast, nothing, number, object detection, online and offline, optical character recognition, optical flow, optimization for cnns, oracle corporation, parameter, parameter (computer programming), parity bit, phoneme, pixel, plasterwork, podcast, precision and recall, prediction, preprocessor, protein–protein interaction, python (programming language), radio, reason, recommender system, recurrent neural network, research, robust statistics, satya nadella, search algorithm, search engine, search engine indexing, self-supervised learning, self-supervised video embeddings, sense, signal, similarity learning, simulation, sms, social media, social networking service, softmax function, software , source lines of code, space, spam detection, spamming, spectral density, spectrogram, speech, speech recognition, speech technologies for video understanding, spotify, statistical classification, statistics, streaming media, string (computer science), subroutine, summation, supervised learning, support-vector machine, temporal topic localization, tensor, texas, three-dimensional space, training, validation, and test sets, transcription (linguistics), transformer (machine learning model), transmission (mechanics), truck, two-stream networks, typing, understanding, unsupervised learning, upload, use case, variance, vector graphics, vector space, video, video captioning, video classification, video embeddings and networks, video game, video game console, video game live streaming, video representations used in production, video search, video search engine, video understanding, weight, youtube
Di Wen
Staff Software Engineer at LinkedIn
before deep learning , artificial intelligence , artificial intelligence tutorial, computer science conference , feed and ads modeling, introduction to multimedia, visio-lingual representations, 3d cnns, accent (sociolinguistics), accuracy and precision, acm 2020 tutorial, acoustic model, action recognition, ads recommendation, advertising, algorithm, angle, apache hadoop, api, application software, applications at linkedin, art, artificial intelligence tutorial, artificial neural network, association for computing machinery, attention, attention (machine learning), average, baby talk, bag-of-words model, bangalore, beef, before deep learning , bible, bichon frise, cartesian coordinate system, castle, central processing unit, click-through rate, closed captioning, code-division multiple access, codec, coherence (physics), common technologies for feed and ads recommendation, compass, computer, computer graphics, computer performance, computer science tutorial, computer science tutorials, computer vision, computer vision 2020, computing, concept, convolution, convolutional neural network, cosine similarity, data, data compression, data science tutorial, deconvolution, deep learning, deep learning and cnns, deep learnning, deep learnning tutorial, definition, depiction, design, desk, diagram, diamond, digital image processing, dimension, dsgmm and deep cluster-and-aggregate method, dynamic programming, education, email spam, energy, engine, enzyme kinetics, equation, essay, euclidean vector, experiment, extract, transform, load, feature (machine learning), feature extraction, feature learning, feed recommendation , film frame, finite set, function (mathematics), gas, gender, gradient, grayscale, hidden markov model, histogram, history, hyperparameter optimization, image embeddings, image representations , image segmentation, image understanding, imagenet, improvements on 3d cnn, improvements on 3d cnns and two-stream, infection, information, information retrieval, input/output, inspection, instagram, intelligence, interface (computing), internet, introduction - feed, ads, search and spam, inverted index, k-means clustering, kdd2020 tutorials, language, language model, learning, lecture-style tutorials, letter case, likelihood function, linear combination, linearity, linkedin, literature, logic, long short-term memory, machine, machine learning, map, markov chain, markov model, mathematical optimization, matrix (mathematics), mean, meme, memory, metric learning for images, metric space, microsoft, mixture model, mobile app, monotonic function, motivation, moving average, mp3, multimedia, multimedia infrastructure, multimedia search, multimodality, multivariate random variable, music, nature, navigation, neural network, news, non-local networks and slowfast, nothing, number, object detection, online and offline, optical character recognition, optical flow, optimization for cnns, oracle corporation, parameter, parity bit, phoneme, pixel, plasterwork, podcast, precision and recall, prediction, protein–protein interaction, radio, reason, recommender system, recurrent neural network, research, robust statistics, satya nadella, search algorithm, search engine, search engine indexing, self-supervised learning, self-supervised video embeddings, sense, signal, similarity learning, simulation, sms, social media, social networking service, softmax function, software , space, spam detection, spamming, spectral density, spectrogram, speech, speech recognition, speech technologies for video understanding, spotify, statistical classification, statistics, streaming media, summation, supervised learning, support-vector machine, temporal topic localization, texas, three-dimensional space, transcription (linguistics), transmission (mechanics), truck, two-stream networks, typing, understanding, unsupervised learning, upload, use case, variance, vector graphics, vector space, video, video captioning, video classification, video embeddings and networks, video game, video game console, video game live streaming, video representations used in production, video search, video search engine, video understanding, weight, youtube
Yijie Dylan Wang
Software Engineering Manager at LinkedIn
before deep learning , artificial intelligence , artificial intelligence tutorial, computer science conference , feed and ads modeling, introduction to multimedia, visio-lingual representations, 3d cnns, accent (sociolinguistics), accuracy and precision, acm 2020 tutorial, acoustic model, action recognition, advertising, algorithm, angle, apache hadoop, api, application software, applications at linkedin, art, artificial intelligence tutorial, artificial neural network, association for computing machinery, attention, attention (machine learning), average, baby talk, bag-of-words model, bangalore, beef, before deep learning , bible, bichon frise, cartesian coordinate system, castle, central processing unit, closed captioning, code-division multiple access, codec, coherence (physics), compass, computer, computer graphics, computer performance, computer science tutorial, computer science tutorials, computer vision, computer vision 2020, computing, concept, convolution, convolutional neural network, data, data compression, data science tutorial, deconvolution, deep learning, deep learning and cnns, deep learnning, deep learnning tutorial, definition, depiction, design, desk, diagram, diamond, digital image processing, dimension, dsgmm and deep cluster-and-aggregate method, dynamic programming, education, email spam, energy, engine, enzyme kinetics, equation, essay, euclidean vector, experiment, extract, transform, load, feature (machine learning), feature extraction, feature learning, film frame, function (mathematics), gas, gender, gradient, grayscale, hidden markov model, histogram, history, hyperparameter optimization, image embeddings, image representations , image segmentation, imagenet, improvements on 3d cnn, improvements on 3d cnns and two-stream, infection, information, information retrieval, input/output, inspection, instagram, intelligence, interface (computing), internet, inverted index, k-means clustering, kdd2020 tutorials, language, language model, learning, lecture-style tutorials, likelihood function, linearity, linkedin, literature, long short-term memory, machine, machine learning, map, markov chain, markov model, mathematical optimization, matrix (mathematics), mean, meme, memory, metric learning for images, metric space, microsoft, mixture model, mobile app, monotonic function, motivation, moving average, mp3, multimedia, multimedia infrastructure, multimodality, music, nature, navigation, neural network, news, non-local networks and slowfast, nothing, number, object detection, online and offline, optical character recognition, optical flow, optimization for cnns, oracle corporation, parameter, parity bit, phoneme, pixel, plasterwork, podcast, precision and recall, prediction, protein–protein interaction, radio, reason, recommender system, recurrent neural network, research, robust statistics, satya nadella, search algorithm, search engine, search engine indexing, self-supervised learning, self-supervised video embeddings, sense, signal, similarity learning, sms, social networking service, softmax function, space, spam detection, spamming, spectral density, spectrogram, speech, speech recognition, speech technologies for video understanding, spotify, statistical classification, statistics, streaming media, supervised learning, support-vector machine, temporal topic localization, texas, three-dimensional space, transcription (linguistics), transmission (mechanics), truck, two-stream networks, typing, understanding, unsupervised learning, upload, use case, variance, vector graphics, vector space, video, video captioning, video classification, video embeddings and networks, video game, video game console, video game live streaming, video search, video search engine, video understanding, weight, youtube
Bharat Jain
Data Scientist at LinkedIn
before deep learning , artificial intelligence , artificial intelligence tutorial, computer science conference , feed and ads modeling, introduction to multimedia, visio-lingual representations, 3d cnns, accent (sociolinguistics), accuracy and precision, acm 2020 tutorial, acoustic model, action recognition, ads recommendation, advertising, algorithm, angle, apache hadoop, api, application software, applications at linkedin, art, artificial intelligence tutorial, artificial neural network, association for computing machinery, attention, attention (machine learning), average, baby talk, bag-of-words model, bangalore, beef, before deep learning , bible, bichon frise, cartesian coordinate system, castle, central processing unit, click-through rate, closed captioning, code-division multiple access, codec, coherence (physics), common technologies for feed and ads recommendation, compass, computer, computer graphics, computer performance, computer science tutorial, computer science tutorials, computer vision, computer vision 2020, computing, concept, convolution, convolutional neural network, cosine similarity, data, data compression, data science tutorial, deconvolution, deep learning, deep learning and cnns, deep learnning, deep learnning tutorial, definition, depiction, design, desk, diagram, diamond, digital image processing, dimension, dsgmm and deep cluster-and-aggregate method, dynamic programming, education, email spam, energy, engine, enzyme kinetics, equation, essay, euclidean vector, experiment, extract, transform, load, feature (machine learning), feature extraction, feature learning, feed recommendation , film frame, finite set, function (mathematics), gas, gender, gradient, grayscale, hidden markov model, histogram, history, hyperparameter optimization, image embeddings, image representations , image segmentation, image understanding, imagenet, improvements on 3d cnn, improvements on 3d cnns and two-stream, infection, information, information retrieval, input/output, inspection, instagram, intelligence, interface (computing), internet, introduction - feed, ads, search and spam, inverted index, k-means clustering, kdd2020 tutorials, language, language model, learning, lecture-style tutorials, letter case, likelihood function, linear combination, linearity, linkedin, literature, logic, long short-term memory, machine, machine learning, map, markov chain, markov model, mathematical optimization, matrix (mathematics), mean, meme, memory, metric learning for images, metric space, microsoft, mixture model, mobile app, monotonic function, motivation, moving average, mp3, multimedia, multimedia infrastructure, multimedia search, multimodality, multivariate random variable, music, nature, navigation, neural network, news, non-local networks and slowfast, nothing, number, object detection, online and offline, optical character recognition, optical flow, optimization for cnns, oracle corporation, parameter, parity bit, phoneme, pixel, plasterwork, podcast, precision and recall, prediction, protein–protein interaction, radio, reason, recommender system, recurrent neural network, research, robust statistics, satya nadella, search algorithm, search engine, search engine indexing, self-supervised learning, self-supervised video embeddings, sense, signal, similarity learning, simulation, sms, social media, social networking service, softmax function, software , space, spam detection, spamming, spectral density, spectrogram, speech, speech recognition, speech technologies for video understanding, spotify, statistical classification, statistics, streaming media, summation, supervised learning, support-vector machine, temporal topic localization, texas, three-dimensional space, transcription (linguistics), transmission (mechanics), truck, two-stream networks, typing, understanding, unsupervised learning, upload, use case, variance, vector graphics, vector space, video, video captioning, video classification, video embeddings and networks, video game, video game console, video game live streaming, video representations used in production, video search, video search engine, video understanding, weight, youtube
Nikita Gupta
Senior Applied Research Engineer at LinkedIn
before deep learning , artificial intelligence , artificial intelligence tutorial, computer science conference , feed and ads modeling, introduction to multimedia, visio-lingual representations, 3d cnns, accent (sociolinguistics), accuracy and precision, acm 2020 tutorial, acoustic model, action recognition, ads recommendation, advertising, algorithm, angle, apache hadoop, api, application software, applications at linkedin, art, artificial intelligence tutorial, artificial neural network, association for computing machinery, attention, attention (machine learning), average, baby talk, bag-of-words model, bangalore, beef, before deep learning , bible, bichon frise, cartesian coordinate system, castle, central processing unit, click-through rate, closed captioning, code-division multiple access, codec, coherence (physics), common technologies for feed and ads recommendation, compass, computer, computer graphics, computer performance, computer science tutorial, computer science tutorials, computer vision, computer vision 2020, computing, concept, convolution, convolutional neural network, cosine similarity, data, data compression, data science tutorial, deconvolution, deep learning, deep learning and cnns, deep learnning, deep learnning tutorial, definition, depiction, design, desk, diagram, diamond, digital image processing, dimension, dsgmm and deep cluster-and-aggregate method, dynamic programming, education, email spam, energy, engine, enzyme kinetics, equation, essay, euclidean vector, experiment, extract, transform, load, feature (machine learning), feature extraction, feature learning, feed recommendation , film frame, finite set, function (mathematics), gas, gender, gradient, grayscale, hidden markov model, histogram, history, hyperparameter optimization, image embeddings, image representations , image segmentation, image understanding, imagenet, improvements on 3d cnn, improvements on 3d cnns and two-stream, infection, information, information retrieval, input/output, inspection, instagram, intelligence, interface (computing), internet, introduction - feed, ads, search and spam, inverted index, k-means clustering, kdd2020 tutorials, language, language model, learning, lecture-style tutorials, letter case, likelihood function, linear combination, linearity, linkedin, literature, logic, long short-term memory, machine, machine learning, map, markov chain, markov model, mathematical optimization, matrix (mathematics), mean, meme, memory, metric learning for images, metric space, microsoft, mixture model, mobile app, monotonic function, motivation, moving average, mp3, multimedia, multimedia infrastructure, multimedia search, multimodality, multivariate random variable, music, nature, navigation, neural network, news, non-local networks and slowfast, nothing, number, object detection, online and offline, optical character recognition, optical flow, optimization for cnns, oracle corporation, parameter, parity bit, phoneme, pixel, plasterwork, podcast, precision and recall, prediction, protein–protein interaction, radio, reason, recommender system, recurrent neural network, research, robust statistics, satya nadella, search algorithm, search engine, search engine indexing, self-supervised learning, self-supervised video embeddings, sense, signal, similarity learning, simulation, sms, social media, social networking service, softmax function, software , space, spam detection, spamming, spectral density, spectrogram, speech, speech recognition, speech technologies for video understanding, spotify, statistical classification, statistics, streaming media, summation, supervised learning, support-vector machine, temporal topic localization, texas, three-dimensional space, transcription (linguistics), transmission (mechanics), truck, two-stream networks, typing, understanding, unsupervised learning, upload, use case, variance, vector graphics, vector space, video, video captioning, video classification, video embeddings and networks, video game, video game console, video game live streaming, video representations used in production, video search, video search engine, video understanding, weight, youtube
Suhit Sinha
Senior Applied Research Engineer at LinkedIn
before deep learning , artificial intelligence , artificial intelligence tutorial, computer science conference , feed and ads modeling, introduction to multimedia, visio-lingual representations, 3d cnns, accent (sociolinguistics), accuracy and precision, acm 2020 tutorial, acoustic model, action recognition, ads recommendation, advertising, algorithm, angle, apache hadoop, api, application software, applications at linkedin, art, artificial intelligence tutorial, artificial neural network, association for computing machinery, attention, attention (machine learning), average, baby talk, bag-of-words model, bangalore, beef, before deep learning , bible, bichon frise, cartesian coordinate system, castle, central processing unit, click-through rate, closed captioning, code-division multiple access, codec, coherence (physics), common technologies for feed and ads recommendation, compass, computer, computer graphics, computer performance, computer science tutorial, computer science tutorials, computer vision, computer vision 2020, computing, concept, convolution, convolutional neural network, cosine similarity, data, data compression, data science tutorial, deconvolution, deep learning, deep learning and cnns, deep learnning, deep learnning tutorial, definition, depiction, design, desk, diagram, diamond, digital image processing, dimension, dsgmm and deep cluster-and-aggregate method, dynamic programming, education, email spam, energy, engine, enzyme kinetics, equation, essay, euclidean vector, experiment, extract, transform, load, feature (machine learning), feature extraction, feature learning, feed recommendation , film frame, finite set, function (mathematics), gas, gender, gradient, grayscale, hidden markov model, histogram, history, hyperparameter optimization, image embeddings, image representations , image segmentation, image understanding, imagenet, improvements on 3d cnn, improvements on 3d cnns and two-stream, infection, information, information retrieval, input/output, inspection, instagram, intelligence, interface (computing), internet, introduction - feed, ads, search and spam, inverted index, k-means clustering, kdd2020 tutorials, language, language model, learning, lecture-style tutorials, letter case, likelihood function, linear combination, linearity, linkedin, literature, logic, long short-term memory, machine, machine learning, map, markov chain, markov model, mathematical optimization, matrix (mathematics), mean, meme, memory, metric learning for images, metric space, microsoft, mixture model, mobile app, monotonic function, motivation, moving average, mp3, multimedia, multimedia infrastructure, multimedia search, multimodality, multivariate random variable, music, nature, navigation, neural network, news, non-local networks and slowfast, nothing, number, object detection, online and offline, optical character recognition, optical flow, optimization for cnns, oracle corporation, parameter, parity bit, phoneme, pixel, plasterwork, podcast, precision and recall, prediction, protein–protein interaction, radio, reason, recommender system, recurrent neural network, research, robust statistics, satya nadella, search algorithm, search engine, search engine indexing, self-supervised learning, self-supervised video embeddings, sense, signal, similarity learning, simulation, sms, social media, social networking service, softmax function, software , space, spam detection, spamming, spectral density, spectrogram, speech, speech recognition, speech technologies for video understanding, spotify, statistical classification, statistics, streaming media, summation, supervised learning, support-vector machine, temporal topic localization, texas, three-dimensional space, transcription (linguistics), transmission (mechanics), truck, two-stream networks, typing, understanding, unsupervised learning, upload, use case, variance, vector graphics, vector space, video, video captioning, video classification, video embeddings and networks, video game, video game console, video game live streaming, video representations used in production, video search, video search engine, video understanding, weight, youtube
Sumit Srivastava
Staff Applied Research Engineer at LinkedIn
before deep learning , artificial intelligence , artificial intelligence tutorial, computer science conference , feed and ads modeling, introduction to multimedia, visio-lingual representations, 3d cnns, accent (sociolinguistics), accuracy and precision, acm 2020 tutorial, acoustic model, action recognition, ads recommendation, advertising, algorithm, angle, apache hadoop, api, application software, applications at linkedin, art, artificial intelligence tutorial, artificial neural network, association for computing machinery, attention, attention (machine learning), average, baby talk, bag-of-words model, bangalore, beef, before deep learning , bible, bichon frise, cartesian coordinate system, castle, central processing unit, click-through rate, closed captioning, code-division multiple access, codec, coherence (physics), common technologies for feed and ads recommendation, compass, computer, computer graphics, computer performance, computer science tutorial, computer science tutorials, computer vision, computer vision 2020, computing, concept, convolution, convolutional neural network, cosine similarity, data, data compression, data science tutorial, deconvolution, deep learning, deep learning and cnns, deep learnning, deep learnning tutorial, definition, depiction, design, desk, diagram, diamond, digital image processing, dimension, dsgmm and deep cluster-and-aggregate method, dynamic programming, education, email spam, energy, engine, enzyme kinetics, equation, essay, euclidean vector, experiment, extract, transform, load, feature (machine learning), feature extraction, feature learning, feed recommendation , film frame, finite set, function (mathematics), gas, gender, gradient, grayscale, hidden markov model, histogram, history, hyperparameter optimization, image embeddings, image representations , image segmentation, image understanding, imagenet, improvements on 3d cnn, improvements on 3d cnns and two-stream, infection, information, information retrieval, input/output, inspection, instagram, intelligence, interface (computing), internet, introduction - feed, ads, search and spam, inverted index, k-means clustering, kdd2020 tutorials, language, language model, learning, lecture-style tutorials, letter case, likelihood function, linear combination, linearity, linkedin, literature, logic, long short-term memory, machine, machine learning, map, markov chain, markov model, mathematical optimization, matrix (mathematics), mean, meme, memory, metric learning for images, metric space, microsoft, mixture model, mobile app, monotonic function, motivation, moving average, mp3, multimedia, multimedia infrastructure, multimedia search, multimodality, multivariate random variable, music, nature, navigation, neural network, news, non-local networks and slowfast, nothing, number, object detection, online and offline, optical character recognition, optical flow, optimization for cnns, oracle corporation, parameter, parity bit, phoneme, pixel, plasterwork, podcast, precision and recall, prediction, protein–protein interaction, radio, reason, recommender system, recurrent neural network, research, robust statistics, satya nadella, search algorithm, search engine, search engine indexing, self-supervised learning, self-supervised video embeddings, sense, signal, similarity learning, simulation, sms, social media, social networking service, softmax function, software , space, spam detection, spamming, spectral density, spectrogram, speech, speech recognition, speech technologies for video understanding, spotify, statistical classification, statistics, streaming media, summation, supervised learning, support-vector machine, temporal topic localization, texas, three-dimensional space, transcription (linguistics), transmission (mechanics), truck, two-stream networks, typing, understanding, unsupervised learning, upload, use case, variance, vector graphics, vector space, video, video captioning, video classification, video embeddings and networks, video game, video game console, video game live streaming, video representations used in production, video search, video search engine, video understanding, weight, youtube
Sirjan Kafle
Senior Machine Learning Engineer, Multimedia AI at LinkedIn
before deep learning , artificial intelligence , artificial intelligence tutorial, computer science conference , feed and ads modeling, introduction to multimedia, visio-lingual representations, 3d cnns, accent (sociolinguistics), accuracy and precision, acm 2020 tutorial, acoustic model, action recognition, ads recommendation, advertising, algorithm, angle, apache hadoop, api, application software, applications at linkedin, art, artificial intelligence tutorial, artificial neural network, association for computing machinery, attention, attention (machine learning), average, baby talk, bag-of-words model, bangalore, beef, before deep learning , bible, bichon frise, cartesian coordinate system, castle, central processing unit, click-through rate, closed captioning, code-division multiple access, codec, coherence (physics), common technologies for feed and ads recommendation, compass, computer, computer graphics, computer performance, computer science tutorial, computer science tutorials, computer vision, computer vision 2020, computing, concept, convolution, convolutional neural network, cosine similarity, data, data compression, data science tutorial, deconvolution, deep learning, deep learning and cnns, deep learnning, deep learnning tutorial, definition, depiction, design, desk, diagram, diamond, digital image processing, dimension, dsgmm and deep cluster-and-aggregate method, dynamic programming, education, email spam, energy, engine, enzyme kinetics, equation, essay, euclidean vector, experiment, extract, transform, load, feature (machine learning), feature extraction, feature learning, feed recommendation , film frame, finite set, function (mathematics), gas, gender, gradient, grayscale, hidden markov model, histogram, history, hyperparameter optimization, image embeddings, image representations , image segmentation, image understanding, imagenet, improvements on 3d cnn, improvements on 3d cnns and two-stream, infection, information, information retrieval, input/output, inspection, instagram, intelligence, interface (computing), internet, introduction - feed, ads, search and spam, inverted index, k-means clustering, kdd2020 tutorials, language, language model, learning, lecture-style tutorials, letter case, likelihood function, linear combination, linearity, linkedin, literature, logic, long short-term memory, machine, machine learning, map, markov chain, markov model, mathematical optimization, matrix (mathematics), mean, meme, memory, metric learning for images, metric space, microsoft, mixture model, mobile app, monotonic function, motivation, moving average, mp3, multimedia, multimedia infrastructure, multimedia search, multimodality, multivariate random variable, music, nature, navigation, neural network, news, non-local networks and slowfast, nothing, number, object detection, online and offline, optical character recognition, optical flow, optimization for cnns, oracle corporation, parameter, parity bit, phoneme, pixel, plasterwork, podcast, precision and recall, prediction, protein–protein interaction, radio, reason, recommender system, recurrent neural network, research, robust statistics, satya nadella, search algorithm, search engine, search engine indexing, self-supervised learning, self-supervised video embeddings, sense, signal, similarity learning, simulation, sms, social media, social networking service, softmax function, software , space, spam detection, spamming, spectral density, spectrogram, speech, speech recognition, speech technologies for video understanding, spotify, statistical classification, statistics, streaming media, summation, supervised learning, support-vector machine, temporal topic localization, texas, three-dimensional space, transcription (linguistics), transmission (mechanics), truck, two-stream networks, typing, understanding, unsupervised learning, upload, use case, variance, vector graphics, vector space, video, video captioning, video classification, video embeddings and networks, video game, video game console, video game live streaming, video representations used in production, video search, video search engine, video understanding, weight, youtube
Aman Gupta
Senior Machine Learning Scientist at LinkedIn Multimedia AI
before deep learning , artificial intelligence , artificial intelligence tutorial, computer science conference , feed and ads modeling, introduction to multimedia, visio-lingual representations, 3d cnns, accent (sociolinguistics), accuracy and precision, acm 2020 tutorial, acoustic model, action recognition, ads recommendation, advertising, algorithm, angle, apache hadoop, api, application software, applications at linkedin, art, artificial intelligence tutorial, artificial neural network, association for computing machinery, attention, attention (machine learning), average, baby talk, bag-of-words model, bangalore, beef, before deep learning , bible, bichon frise, cartesian coordinate system, castle, central processing unit, click-through rate, closed captioning, code-division multiple access, codec, coherence (physics), common technologies for feed and ads recommendation, compass, computer, computer graphics, computer performance, computer science tutorial, computer science tutorials, computer vision, computer vision 2020, computing, concept, convolution, convolutional neural network, cosine similarity, data, data compression, data science tutorial, deconvolution, deep learning, deep learning and cnns, deep learnning, deep learnning tutorial, definition, depiction, design, desk, diagram, diamond, digital image processing, dimension, dsgmm and deep cluster-and-aggregate method, dynamic programming, education, email spam, energy, engine, enzyme kinetics, equation, essay, euclidean vector, experiment, extract, transform, load, feature (machine learning), feature extraction, feature learning, feed recommendation , film frame, finite set, function (mathematics), gas, gender, gradient, grayscale, hidden markov model, histogram, history, hyperparameter optimization, image embeddings, image representations , image segmentation, image understanding, imagenet, improvements on 3d cnn, improvements on 3d cnns and two-stream, infection, information, information retrieval, input/output, inspection, instagram, intelligence, interface (computing), internet, introduction - feed, ads, search and spam, inverted index, k-means clustering, kdd2020 tutorials, language, language model, learning, lecture-style tutorials, letter case, likelihood function, linear combination, linearity, linkedin, literature, logic, long short-term memory, machine, machine learning, map, markov chain, markov model, mathematical optimization, matrix (mathematics), mean, meme, memory, metric learning for images, metric space, microsoft, mixture model, mobile app, monotonic function, motivation, moving average, mp3, multimedia, multimedia infrastructure, multimedia search, multimodality, multivariate random variable, music, nature, navigation, neural network, news, non-local networks and slowfast, nothing, number, object detection, online and offline, optical character recognition, optical flow, optimization for cnns, oracle corporation, parameter, parity bit, phoneme, pixel, plasterwork, podcast, precision and recall, prediction, protein–protein interaction, radio, reason, recommender system, recurrent neural network, research, robust statistics, satya nadella, search algorithm, search engine, search engine indexing, self-supervised learning, self-supervised video embeddings, sense, signal, similarity learning, simulation, sms, social media, social networking service, softmax function, software , space, spam detection, spamming, spectral density, spectrogram, speech, speech recognition, speech technologies for video understanding, spotify, statistical classification, statistics, streaming media, summation, supervised learning, support-vector machine, temporal topic localization, texas, three-dimensional space, transcription (linguistics), transmission (mechanics), truck, two-stream networks, typing, understanding, unsupervised learning, upload, use case, variance, vector graphics, vector space, video, video captioning, video classification, video embeddings and networks, video game, video game console, video game live streaming, video representations used in production, video search, video search engine, video understanding, weight, youtube
Ananth Sankar
Principal Staff Engineer at LinkedIn
before deep learning , artificial intelligence , artificial intelligence tutorial, computer science conference , feed and ads modeling, introduction to multimedia, visio-lingual representations, 3d cnns, accent (sociolinguistics), accuracy and precision, acm 2020 tutorial, acoustic model, action recognition, ads recommendation, advertising, ai, algorithm, angle, apache hadoop, api, application software, applications at linkedin, art, artificial intelligence tutorial, artificial neural network, association for computing machinery, attention, attention (machine learning), automatic summarization, average, baby talk, backpropagation, bag-of-words model, bangalore, beef, before deep learning , bible, bichon frise, black box, cartesian coordinate system, castle, central processing unit, click-through rate, closed captioning, code-division multiple access, codec, coherence (physics), common technologies for feed and ads recommendation, compass, computer, computer graphics, computer performance, computer science tutorial, computer science tutorials, computer vision, computer vision 2020, computing, concept, convolution, convolutional neural network, cosine similarity, cross entropy, data, data compression, data science, data science tutorial, deconvolution, deep learning, deep learning and cnns, deep learnning, deep learnning tutorial, definition, depiction, design, desk, diagram, diamond, digital image processing, dimension, dsgmm and deep cluster-and-aggregate method, dynamic programming, education, email spam, encoding (memory), energy, engine, english language, enzyme kinetics, equation, essay, euclidean vector, experiment, extract, transform, load, feature (machine learning), feature extraction, feature learning, feed recommendation , feedforward neural network, film frame, finite set, four-dimensional space, function (mathematics), gas, gender, gradient, grayscale, hidden markov model, histogram, history, hyperparameter optimization, image embeddings, image representations , image segmentation, image understanding, imagenet, improvements on 3d cnn, improvements on 3d cnns and two-stream, infection, information, information retrieval, input/output, inspection, instagram, intelligence, interface (computing), internet, introduction - feed, ads, search and spam, inverted index, k-means clustering, kdd2020 tutorials, language, language model, learning, lecture-style tutorials, letter case, likelihood function, linear combination, linearity, linkedin, literature, logic, long short-term memory, machine, machine learning, map, markov chain, markov model, mathematical optimization, matrix (mathematics), mean, meme, memory, metric learning for images, metric space, microsoft, mind, mixture model, mobile app, monotonic function, motivation, moving average, mp3, multimedia, multimedia infrastructure, multimedia search, multimodality, multivariate random variable, music, natural language processing, nature, navigation, neural network, neural networks, news, non-local networks and slowfast, nothing, number, object detection, odsc, odsc india, online and offline, optical character recognition, optical flow, optimization for cnns, oracle corporation, parameter, parity bit, phoneme, pixel, plasterwork, podcast, precision and recall, prediction, protein–protein interaction, radio, reason, recommender system, recurrent neural network, research, robust statistics, satya nadella, search algorithm, search engine, search engine indexing, self-supervised learning, self-supervised video embeddings, semantics, sense, signal, similarity learning, simulation, sms, social media, social networking service, softmax function, software , space, spam detection, spamming, spectral density, spectrogram, speech, speech recognition, speech technologies for video understanding, spotify, statistical classification, statistics, streaming media, summation, supervised learning, support-vector machine, temporal topic localization, texas, three-dimensional space, transcription (linguistics), transmission (mechanics), truck, two-stream networks, typing, understanding, unsupervised learning, upload, use case, vanishing gradient problem, variance, vector graphics, vector space, video, video captioning, video classification, video embeddings and networks, video game, video game console, video game live streaming, video representations used in production, video search, video search engine, video understanding, vocabulary, weight, youtube
Qiang Yang
Chair Professor at Hong Kong University of Science & Technology
computer science 2020, accuracy and precision, acm 2020, action selection, artificial intelligence, association for computing machinery, automated machine learning, automation, behavior, brand, complexity, computer vision, computing, data science, database, deep learning, feature engineering, human, inner product space, itunes, kdd2020, kdd2020 tutorial, linear algebra, linearity, machine learning, mass media, mathematical optimization, nasa, predation, prediction, recommender system, science, system, time complexity
Isabelle Guyon
Chair Professor at University Paris-Saclay
computer science 2020, accuracy and precision, acm 2020, action selection, artificial intelligence, association for computing machinery, automated machine learning, automation, behavior, brand, complexity, computer vision, computing, data science, database, deep learning, feature engineering, human, inner product space, itunes, kdd2020, kdd2020 tutorial, linear algebra, linearity, machine learning, mass media, mathematical optimization, nasa, predation, prediction, recommender system, science, system, time complexity
James T. Kwok
Professor at Hong Kong University of Science & Technology
computer science 2020, accuracy and precision, acm 2020, action selection, artificial intelligence, association for computing machinery, automated machine learning, automation, behavior, brand, complexity, computer vision, computing, data science, database, deep learning, feature engineering, human, inner product space, itunes, kdd2020, kdd2020 tutorial, linear algebra, linearity, machine learning, mass media, mathematical optimization, nasa, predation, prediction, recommender system, science, system, time complexity
Chen Gao
PhD Student at Tsinghua University
computer science 2020, accuracy and precision, acm 2020, action selection, artificial intelligence, association for computing machinery, automated machine learning, automation, behavior, brand, complexity, computer vision, computing, data science, database, deep learning, feature engineering, human, inner product space, itunes, kdd2020, kdd2020 tutorial, linear algebra, linearity, machine learning, mass media, mathematical optimization, nasa, predation, prediction, recommender system, science, system, time complexity
Quanming Yao
Algorithm Engineer at 4Paradigm
computer science 2020, accuracy and precision, acm 2020, action selection, artificial intelligence, association for computing machinery, automated machine learning, automation, behavior, brand, complexity, computer vision, computing, data science, database, deep learning, feature engineering, human, inner product space, itunes, kdd2020, kdd2020 tutorial, linear algebra, linearity, machine learning, mass media, mathematical optimization, nasa, predation, prediction, recommender system, science, system, time complexity
Ben Cartette
Senior Research Manager at Spotify, New York
computer science 2020, accuracy and precision, acm 2020, action selection, artificial intelligence, association for computing machinery, automated machine learning, automation, behavior, brand, complexity, computer vision, computing, data science, database, deep learning, feature engineering, human, inner product space, itunes, kdd2020, kdd2020 tutorial, linear algebra, linearity, machine learning, mass media, mathematical optimization, nasa, predation, prediction, recommender system, science, system, time complexity
Rishabh Mehrotra
Senior Research Scientist at Spotify
computer science 2020, accuracy and precision, acm 2020, action selection, amazon (company), artificial intelligence, association for computing machinery, automated machine learning, automation, behavior, bias, brand, case study, codec, complexity, computer vision, computing, data science, database, deep learning, emotion, evidence, experiment, facebook, feature engineering, feedback, function (mathematics), herbicide, human, information, inner product space, intelligence, itunes, kdd2020, kdd2020 tutorial, linear algebra, linearity, machine learning, mass media, mathematical optimization, motivation, motor control, nasa, predation, prediction, question, reason, recommender system, research, science, signal, spotify, system, time complexity, training, validation, and test sets, video, weak supervision, weed
Yong Li
Associate Professor at Tsinghua University
computer science 2020, accuracy and precision, acm 2020, action selection, alcohol (drug), artificial intelligence, artificial intelligence 2020, association for computing machinery, automated machine learning, automation, behavior, beijing, brand, bubble tea, complexity, computer science 2020, computer vision, computing, covid-19 pandemic, data science, database, deep learning, deep learning 2020, economy, epidemic, feature engineering, health care, health day at kdd2020, hospital, human, incentive, infection, information, inner product space, itunes, kdd2020, kdd2020 tutorial, linear algebra, linearity, machine learning, machine learning 2020, mass media, mathematical optimization, nasa, patient, predation, prediction, privacy, probability, quarantine, recommender system, reinforcement learning, risk, science, severe acute respiratory syndrome coronavirus 2, statistics, system, tax, tea, time complexity, travel agency, tunica language, virus
Shirin Elsinghorst
Data Scientist at codecentric AG
activation function, artificial neural network, autoencoder, backpropagation, channel (digital image), computer file, computer vision, convolutional neural network, cross entropy, hyperparameter optimization, linearity, machine learning, matrix (mathematics), perceptron, pixel, regression analysis, regularization (mathematics), rstats, science, softmax function, statistical classification, statistics, supervised learning, tensorflow, training, validation, and test sets, unsupervised learning
1
1-24 of 24